CS (MAIN) EXAM:2018 वियोज्य DETACHABLE

गणित (प्रश्न-पत्र II) MATHEMATICS (Paper II)

निर्धारित समय : तीन घण्टे Time Allowed : Three Hours अधिकतम अंक : 250

Maximum Marks: 250

प्रश्न-पत्र सम्बन्धी विशेष अन्देश

कृपया प्रश्नों के उत्तर देने से पूर्व निम्नलिखित प्रत्येक अनुदेश को ध्यानपूर्वक पढ़ें। इसमें आठ प्रश्न हैं जो दो खण्डों में विभाजित हैं तथा हिन्दी और अंग्रेजी दोनों में छपे हैं। परीक्षार्थी को कल पाँच प्रश्नों के उत्तर देने हैं।

प्रश्न संख्या 1 और 5 अनिवार्य हैं तथा बाकी में से प्रत्येक खण्ड से कम-से-कम एक प्रश्न चुनकर किन्हीं तीन प्रश्नों के उत्तर दीजिए।

प्रत्येक प्रश्न/भाग के अंक उसके सामने दिए गए हैं।

प्रश्नों के उत्तर उसी माध्यम में लिखे जाने चाहिए, जिसका उल्लेख आपके प्रवेश-पत्र में किया गया है, और इस माध्यम का स्पष्ट उल्लेख प्रश्न-सह-उत्तर (क्यू.सी.ए.) पुस्तिका के मुखपृष्ठ पर निर्दिष्ट स्थान पर किया जाना चाहिए। उल्लिखित माध्यम के अतिरिक्त अन्य किसी माध्यम में लिखे गए उत्तर पर कोई अंक नहीं मिलेंगे। यदि आवश्यक हो, तो उपयुक्त आँकड़ों का चयन कीजिए, तथा उनको निर्दिष्ट कीजिए।

जब तक उल्लिखित न हो, संकेत तथा शब्दावली प्रचलित मानक अर्थों में प्रयुक्त हैं।

प्रश्नों के उत्तरों की गणना क्रमानुसार की जाएगी। यदि काटा नहीं हो, तो प्रश्न के उत्तर की गणना की जाएगी चाहे वह उत्तर अंशतः दिया गया हो। प्रश्न-सह-उत्तर पुस्तिका में खाली छोड़ा हुआ पृष्ठ या उसके अंश को स्पष्ट रूप से काटा जाना चाहिए।

QUESTION PAPER SPECIFIC INSTRUCTIONS

Please read each of the following instructions carefully before attempting questions.

There are EIGHT questions divided in TWO SECTIONS and printed both in HINDI and in ENGLISH.

Candidate has to attempt FIVE questions in all.

Questions No. 1 and 5 are compulsory and out of the remaining, any THREE are to be attempted choosing at least ONE question from each Section.

The number of marks carried by a question/part is indicated against it.

Answers must be written in the medium authorized in the Admission Certificate which must be stated clearly on the cover of this Question-cum-Answer (QCA) Booklet in the space provided. No marks will be given for answers written in a medium other than the authorized one.

Assume suitable data, if considered necessary, and indicate the same clearly.

Unless and otherwise indicated, symbols and notations carry their usual standard meaning.

Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page of portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

खण्ड 'A' SECTION 'A'

 मान लीजिए R तत्समक अवयव सहित एक पूर्णांकीय प्रांत है । दर्शाइए कि R[x] में कोई भी एकक R में एक एकक है ।

Let R be an integral domain with unit element. Show that any unit in R[x] is a unit in R.

1.(b) असमिका : $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}$ को सिद्ध कीजिए।

Prove the inequality: $\frac{\pi^2}{9} < \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{x}{\sin x} dx < \frac{2\pi^2}{9}.$

- 1.(c) सिद्ध कीजिए कि फलन : $u(x,y) = (x-1)^3 3xy^2 + 3y^2$ प्रसंवादी है और इसके प्रसंवादी संयुग्मी को और संगत विश्लेषिक फलन f(z) को, z के रूप में ज्ञात कीजिए ।

 Prove that the function : $u(x,y) = (x-1)^3 3xy^2 + 3y^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function f(z) in terms of z. 10
- 1.(d) p(>0) का वह परास ज्ञात कीजिए, जिसके लिए श्रेणी:

$$\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \dots, a > 0$$

(i) निरपेक्षत: अभिसारी तथा (ii) सापेक्ष अभिसारी है।

Find the range of p(>0) for which the series:

$$\frac{1}{(1+a)^p} - \frac{1}{(2+a)^p} + \frac{1}{(3+a)^p} - \dots, \ a > 0, \text{ is}$$

(i) absolutely convergent and (ii) conditionally convergent.

1.(e) एक कृषि फर्म के पास 180 टन नाइट्रोजन उर्वरक, 250 टन फॉस्फेट तथा 220 टन पोटाश है। फर्म इन पदार्थों के क्रमश: 3:3:4 के अनुपात में मिश्रण को 1500 रुपये प्रति टन के मुनाफे से तथा 2:4:2 के अनुपात में मिश्रण को 1200 रुपये प्रति टन के मुनाफे से बेच पायेगी। एक रैखिक-प्रोग्रामन समस्या प्रस्तुत कीजिए, जो यह दर्शाए कि अधिकतम मुनाफा प्राप्त करने के लिए, इन मिश्रणों की कितने टन मात्रा तैयार की जानी चाहिए।

An agricultural firm has 180 tons of nitrogen fertilizer, 250 tons of phosphate and 220 tons of potash. It will be able to sell a mixture of these substances in their respective ratio 3:3:4 at a profit of Rs. 1500 per ton and a mixture in the ratio 2:4:2 at a profit of Rs. 1200 per ton. Pose a linear programming problem to show how many tons of these two mixtures should be prepared to obtain the maximum profit.

10

2.(a) दर्शाइए कि (IR, +) मोड्यूलो Z का विभाग समूह, सम्मिश्र तल में एकांक वृत्त पर सम्मिश्र संख्याओं के गुणनात्मक समूह से तुल्यकारी होता है। यहां पर IR, वास्तविक संख्याओं का समुच्चय है तथा Z पूर्णांकों का समुच्चय है।

Show that the quotient group of (IR, +) modulo \mathbb{Z} is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here IR is the set of real numbers and \mathbb{Z} is the set of integers.

2.(b) निम्नलिखित रैखिक प्रोग्रामन समस्या को Big M विधि से हल कीजिए तथा दर्शाइए कि समस्या के परिमित इष्टतम हल हैं। साथ ही उद्देश्य फलन का मान भी ज्ञात कीजिए : -2्यूनतमीकरण कीजिए $z = 3x_1 + 5x_2$

बशर्ते कि
$$x_1 + 2x_2 \ge 8$$

 $3x_1 + 2x_2 \ge 12$
 $5x_1 + 6x_2 \le 60$,
 $x_1, x_2 \ge 0$.

Solve the following linear programming problem by Big M-method and show that the problem has finite optimal solutions. Also find the value of the objective function:

Minimize $z = 3x_1 + 5x_2$

subject to
$$x_1 + 2x_2 \ge 8$$

 $3x_1 + 2x_2 \ge 12$
 $5x_1 + 6x_2 \le 60$,
 $x_1, x_2 \ge 0$.

20

2.(c) दर्शाइए कि यदि IR के विवृत अन्तराल (a, b) पर परिभाषित फलन f अवमुख हो, तो वह संतत है । उदाहरण के द्वारा दर्शाइए कि यदि विवृत अन्तराल होने की शर्त न हो, तब अवमुख फलन का संतत होना आवश्यक नहीं है ।

Show that if a function f defined on an open interval (a, b) of \mathbb{R} is convex, then f is continuous. Show, by example, if the condition of open interval is dropped, then the convex function need not be continuous.

3.(a) क्षेत्र (\mathbb{Z}_{13} , $+_{13}$, \times_{13}), जहाँ पर $+_{13}$ तथा \times_{13} क्रमशः योग मोड्यूलो 13 व गुणन मोड्यूलो 13 निरूपित करते हैं, के गुणनात्मक समूह के सभी उचित उपसमूहों को ज्ञात कीजिए।

Find all the proper subgroups of the multiplicative group of the field (\mathbb{Z}_{13} , $+_{13}$, \times_{13}), where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively.

3.(b) अवशेष प्रमेय के अनुप्रयोग के द्वारा दर्शाइए कि
$$\int_0^\infty \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}, a > 0.$$

Show by applying the residue theorem that
$$\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}, \ a > 0.$$

3.(c) अधोलिखित समीकरणों के रैखिकतः स्वतंत्र समुच्चय में कितने आधारी हल हैं ? उन सभी को जात कीजिए ।

$$2x_1 - x_2 + 3x_3 + x_4 = 6$$

$$4x_1 - 2x_2 - x_3 + 2x_4 = 10.$$

How many basic solutions are there in the following linearly independent set of equations? Find all of them.

$$2x_1 - x_2 + 3x_3 + x_4 = 6$$

$$4x_1 - 2x_2 - x_3 + 2x_4 = 10.$$

- 4.(a) मान लीजिए कि IR सभी वास्तविक संख्याओं का समुच्चय है तथा $f: IR \to IR$ ऐसा फलन है कि सभी $x, y \in IR$ के लिए निम्नलिखित समीकरण लागू होते हैं:
 - (i) f(x + y) = f(x) + f(y)
 - (ii) f(xy) = f(x) f(y)

दर्शाइए कि सभी $\forall x \in \mathbb{R}$ के लिए या तो f(x) = 0 या f(x) = x है।

Suppose IR be the set of all real numbers and $f:IR \rightarrow IR$ is a function such that the following equations hold for all $x, y \in IR$:

- (i) f(x + y) = f(x) + f(y)
- (ii) f(xy) = f(x) f(y)

Show that $\forall x \in \mathbb{R}$ either f(x) = 0, or, f(x) = x.

20

- **4.**(b) फलन $\frac{1}{(1+z^2)(z+2)}$ को निरूपित करने वाली लाँरेन्ज श्रेणी ज्ञात कीजिए जब
 - (i) |z| < 1
 - (ii) 1 < |z| < 2
 - (iii) |z|>2

Find the Laurent's series which represent the function $\frac{1}{(1+z^2)(z+2)}$ when

- (i) |z| < 1
- (ii) 1<|z|<2
- (iii) |z|>2

4.(c) एक फैक्ट्री में पाँच प्रचालक O_1 , O_2 , O_3 , O_4 , O_5 तथा पाँच मशीनें M_1 , M_2 , M_3 , M_4 , M_5 हैं । पिरचालन लागत, जब कि O_i प्रचालक M_j (i, j = 1, 2, ..., 5) मशीन को परिचालन करता है, दी गई हैं । लेकिन एक प्रतिबन्ध है कि O_3 को तीसरी मशीन M_3 का परिचालन करने तथा O_2 को पाँचवीं मशीन M_5 का परिचालन करने की इजाज़त नहीं दी जा सकती है । लागत आव्यूह नीचे दी है । इष्टतम नियतन तथा इष्टतम नियतन की लागत ज्ञात कीजिए ।

मशीन Machine

		M_1	M_2	M_3	M_4	M_5
प्रचालक Operator	O_1	24	29	18	32	19
	O_2	17	26	34	22	21
	03	27	16	28	17	25
	O_4	22	18	28	30	24
	05	28	16	31	24	27

In a factory there are five operators O_1 , O_2 , O_3 , O_4 , O_5 and five machines M_1 , M_2 , M_3 , M_4 , M_5 . The operating costs are given when the O_i operator operates the M_j machine (i, j = 1, 2, ..., 5). But there is a restriction that O_3 cannot be allowed to operate the third machine M_3 and O_2 cannot be allowed to operate the fifth machine M_5 . The cost matrix is given above. Find the optimal assignment and the optimal assignment cost also.

खण्ड 'B' SECTION 'B'

- 5.(a) दीर्घवृत्तज : $x^2 + 4y^2 + 4z^2 = 4$ के उन सभी स्पर्श-तलों के संकाय का आंशिक अवकल समीकरण ज्ञात कीजिए, जो xy समतल के लम्बवत नहीं हैं।
 - Find the partial differential equation of the family of all tangent planes to the ellipsoid: $x^2 + 4y^2 + 4z^2 = 4$, which are not perpendicular to the xy plane.
- 5.(b) न्यूटन के अग्रांतर फार्मूले से निम्नतम-घातीय बहुपद u_x ज्ञात कीजिए जब कि $u_1 = 1$, $u_2 = 9$, $u_3 = 25$, $u_4 = 55$ तथा $u_5 = 105$ दिया गया है।
 - Using Newton's forward difference formula find the lowest degree polynomial u_x when it is given that $u_1 = 1$, $u_2 = 9$, $u_3 = 25$, $u_4 = 55$ and $u_5 = 105$.
- 5.(c) एक असंपीड्य तरल प्रवाह के लिए वेग (u, v, w) के दो घटक $u = x^2 + 2y^2 + 3z^2$ व $v = x^2y y^2z + zx$ दिए गए हैं । वेग के तीसरे घटक w का निर्धारण कीजिए ताकि वे सांतत्य समीकरण को सन्तष्ट करें । त्वरण के z-घटक को भी ज्ञात कीजिए ।

For an incompressible fluid flow, two components of velocity (u, v, w) are given by $u = x^2 + 2y^2 + 3z^2$, $v = x^2y - y^2z + zx$. Determine the third component w so that they satisfy the equation of continuity. Also, find the z-component of acceleration.

5.(d) विराम अवस्था से प्रारम्भ हो कर एक रेलगाड़ी की रफतार (किमी/घं में) विभिन्न समयों (मिनट में) पर निम्न सारणी के द्वारा दी गई है:

सिम्पसन के $\frac{1}{3}$ नियम के इस्तेमाल से प्रारंभ से 20 मिनटों में चली गई सन्निकट दूरी (किमी. में) ज्ञात कीजिए।

समय (मिनट) Time (Minutes)	2	4	6	8	10	12	14	16	18	20
रफ़तार (किमी/घं) Speed (Km/h)	10	18	25	29	32	20	11	5	2	8-5

Starting from rest in the beginning, the speed (in Km/h) of a train at different times (in minutes) is given by the above table:

Using Simpson's $\frac{1}{3}$ rd rule, find the approximate distance travelled (in Km) in 20 minutes from the beginning.

5.(e) समीकरण : $xe^x - 1 = 0$ को द्विभाजन-विधि के द्वारा, दशमलव के 4 अंकों तक, हल करने के लिए, आधारी ऐल्गोरिथ्म लिखिए।

Write down the basic algorithm for solving the equation: $xe^x - 1 = 0$ by bisection method, correct to 4 decimal places.

6.(a) आंशिक अवकल समीकरण:

$$(y^3x-2x^4)p + (2y^4-x^3y)q = 9z(x^3-y^3), \overline{a}_1,$$

जहाँ $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$ है, का व्यापक हल ज्ञात कीजिए, तथा इसके, बक्र: $x = t, y = t^2, z = 1$

में से गुजरने वाले समाकल पृष्ठ को भी ज्ञात कीजिए।

Find the general solution of the partial differential equation:

$$(y^3x - 2x^4)p + (2y^4 - x^3y)q = 9z(x^3 - y^3),$$

where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$, and find its integral surface that passes through the curve:

$$x = t, y = t^2, z = 1.$$

- 6.(b) अधोलिखित संख्याओं के समतुल्यों को उनके सम्मुख दर्शाई गई विशिष्ट संख्या पद्धित में, ज्ञात कीजिए।
 - (i) (111011·101)₂ को दशमलव पद्धति में
 - (ii) (10001111110000-00101100)₂ को षड्दशमलव पद्धति में
 - (iii) (C4F2)₁₆ को दशमलव पद्धति में
 - (iv) (418)10 को द्विआधारी पद्धति में

Find the equivalent of numbers given in a specified number system to the system mentioned against them.

- (i) (111011-101)2 to decimal system
- (ii) (10001111110000-00101100)2 to hexadecimal system
- (iii) (C4F2)16 to decimal system
- (iv) (418)10 to binary system

15

6.(c) मान लीजिए किसी यांत्रिक-निकाय का लेगरान्जियन :

$$L = \frac{1}{2}m(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2) - \frac{1}{2}k(ax^2 + 2bxy + cy^2),$$

के द्वारा चोतित है जहाँ a, b, c, m(>0), k(>0) स्थिरांक हैं तथा $b^2 \neq ac$ लेगरान्जियन समीकरणों को लिखिए तथा निकाय को पहचानिए ।

Suppose the Lagrangian of a mechanical system is given by

$$L = \frac{1}{2}m(a\dot{x}^2 + 2b\dot{x}\dot{y} + c\dot{y}^2) - \frac{1}{2}k(ax^2 + 2bxy + cy^2),$$

where a, b, c, m(>0), k(>0) are constants and $b^2 \neq ac$. Write down the Lagrangian equations of motion and identify the system.

7.(a) आंशिक अवकल समीकरण:

$$(2D^2-5DD'+2D'^2)z=5\sin(2x+y)+24(y-x)+e^{3x+4y}$$
 को हल कीजिए जहाँ $D\equiv\frac{\partial}{\partial x}$, $D'\equiv\frac{\partial}{\partial y}$.

Solve the partial differential equation:

$$(2D^2 - 5DD' + 2D'^2)z = 5\sin(2x + y) + 24(y - x) + e^{3x+4y}$$

where
$$D = \frac{\partial}{\partial x}$$
, $D' = \frac{\partial}{\partial y}$.

7.(b) स्थिराँकों a, b, c के मान निकालिए ताकि क्षेत्रकलन-सूत्र

$$\int_{o}^{h} f(x)dx = h \left[af(o) + bf\left(\frac{h}{3}\right) + cf(h) \right]$$
 अधिक से अधिक सम्भव घातीय बहुपदों के लिए सही हो । अतएव रुंडन-त्रुटि का क्रम भी ज्ञात कीजिए ।

Find the values of the constants a, b, c such that the quadrature formula

$$\int_{0}^{h} f(x)dx = h \left[af(o) + bf\left(\frac{h}{3}\right) + cf(h) \right]$$
 is exact for polynomials of as high degree as possible, and hence find the order of the truncation error.

7.(c) किसी यांत्रिक निकाय का हैमिल्टोनियन $H = p_1q_1 - aq_1^2 + bq_2^2 - p_2q_2$ के द्वारा द्योतित है, जहाँ a, b स्थिरांक हैं । हैमिल्टोनियन समीकरणों का हल निकालिए तथा दर्शाइए कि

$$\frac{p_2 - bq_2}{q_1} = स्थिराँक 1$$

The Hamiltonian of a mechanical system is given by,

 $H = p_1q_1 - aq_1^2 + bq_2^2 - p_2q_2$, where a, b are the constants. Solve the Hamiltonian equations and show that $\frac{p_2 - bq_2}{q_1} = \text{constant}$.

- 8.(a) बूलीय ब्यंजक : $(a+b)\cdot(\bar{b}+c)+b\cdot(\bar{a}+\bar{c}) \text{ को बूलीय-बीजगणित के नियमों का उपयोग करने के द्वारा सरल कीजिए । इस की सत्यता-सारणी से इसको मिनटर्म प्रसामान्य रूप में लिखिए । Simplify the boolean expression : <math display="block">(a+b)\cdot(\bar{b}+c)+b\cdot(\bar{a}+\bar{c}) \text{ by using the laws of boolean algebra. From its truth table write it in minterm normal form.}$
- 8.(b) एक द्विविमीय विभव-प्रवाह के लिए वेंग विभव $\phi = x^2y xy^2 + \frac{1}{3}(x^3 y^3)$ के द्वारा दिया गया है । x व y दिशाओं के अनुदिश वेग घटकों का निर्धारण कीजिए । धारा-फलन ψ का भी निर्धारण कीजिए और जाँच कीजिए कि क्या ϕ एक सम्भव प्रवाह को निरूपित करता है अथवा नहीं । For a two-dimensional potential flow, the velocity potential is given by $\phi = x^2y xy^2 + \frac{1}{3}(x^3 y^3)$. Determine the velocity components along the directions x and y. Also, determine the stream function ψ and check whether ϕ represents a possible case of flow or not.
- 8.(c) एक पतली वलयिका (एनुलस) क्षेत्र $0 < a \le r \le b$, $0 \le \theta \le 2\pi$ को घेरती है। इसके तल ताप-अवरोधी हैं.। आन्तरिक किनारे के साथ-साथ ताप 0° पर स्थिर रखा जाता है जबिक बाह्य किनारे का ताप $T = K \cos \frac{\theta}{2}$ पर बनाए रखा जाता है, जहाँ K एक स्थिरांक है। वलयिका में ताप-वितरण का निर्धारण कीजिए।

A thin annulus occupies the region $0 < a \le r \le b$, $0 \le \theta \le 2\pi$. The faces are insulated. Along the inner edge the temperature is maintained at 0° , while along the outer edge the temperature is held at $T = K \cos \frac{\theta}{2}$, where K is a constant. Determine the temperature distribution in the annulus.